PlumX Metrics
Embed PlumX Metrics

Metaheuristics with deep learning driven phishing detection for sustainable and secure environment

Sustainable Energy Technologies and Assessments, ISSN: 2213-1388, Vol: 56, Page: 103114
2023
  • 7
    Citations
  • 0
    Usage
  • 23
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    7
    • Citation Indexes
      7
  • Captures
    23

Article Description

Information technologies have intervened in every aspect of human life. This growth of connectivity, however, has radically changed the phishing attack landscape. In a phishing attack, users are tricked into providing data they would not willingly share otherwise. This attack is a persistent threat to the sustainability and security of ubiquitous systems. Hence, this paper introduces a novel metaheuristics deep learning-oriented phishing detection (MDLPD-SSE) technique for a sustainable and secure environment. The presented MDLPD-SSE model majorly focuses on identifying phishing websites. For this, the MDLPD-SSE method pre-processes the input URL to transform it into a compatible format. In addition, an improved simulated annealing-based feature selection (ISA-FS) approach was used to derive feature subsets. Furthermore, the long short-term memory (LSTM) model is utilized in this study to identify phishing. Finally, the bald eagle search (BES) optimization methodology was exploited to fine-tune the hyperparameters relevant to the LSTM model. Our outcomes demonstrated the superiority of the proposed model with an improved accuracy of 95.78%.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know