Filter design for the detection/estimation of the modulus of a vector
Signal Processing, ISSN: 0165-1684, Vol: 91, Issue: 7, Page: 1527-1534
2011
- 2Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We consider a set of M images, whose pixel intensities at a common point can be treated as the components of a M -dimensional vector. We are interested in the estimation of the modulus of such a vector associated to a compact source. For instance, the detection/estimation of the polarized signal of compact sources immersed in a noisy background is relevant in some fields like astrophysics. We develop two different techniques, one based on the maximum likelihood estimator (MLE) applied to the modulus distribution, the modulus filter (ModF) and other based on prefiltering the components before fusion, the filtered fusion (FF), to deal with this problem. We present both methods in the general case of M images and apply them to the particular case of three images (linear plus circular polarization). Numerical simulations have been performed to test these filters considering polarized compact sources immersed in stationary noise. The FF performs better than the ModF in terms of errors in the estimated amplitude and position of the source, especially in the low signal-to-noise case. We also compare both methods with the direct application of a matched filter (MF) on the polarization data. This last technique is clearly outperformed by the new methods.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0165168410004342; http://dx.doi.org/10.1016/j.sigpro.2010.12.008; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=79952043917&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0165168410004342; https://dx.doi.org/10.1016/j.sigpro.2010.12.008
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know