Weighted Heisenberg–Pauli–Weyl uncertainty principles for the linear canonical transform
Signal Processing, ISSN: 0165-1684, Vol: 165, Page: 209-221
2019
- 15Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The classical uncertainty principle plays an important role in quantum mechanics, signal processing and applied mathematics. With the development of novel signal processing methods, the research of the related uncertainty principles has gradually been one of the most hottest research topics in modern signal processing community. In this paper, the weighted Heisenberg–Pauli–Weyl uncertainty principles for the linear canonical transform (LCT) have been investigated in detail. Firstly, the Plancherel–Parseval–Rayleigh identities associated with the LCT are derived. Secondly, the weighted Heisenberg–Pauli–Weyl uncertainty principles in the LCT domain are investigated based on the derived identities. The signals that can achieve the lower bound of the uncertainty principle are also obtained. The classical Heisenberg uncertainty principles in the Fourier transform (FT) domain are shown to be special cases of our achieved results. Thirdly, examples are provided to show that our weighted Heisenberg–Pauli–Weyl uncertainty principles are sharper than those in the existing literature. Finally, applications of the derived results in time frequency resolution analysis and signal energy concentrations are also analyzed and discussed in detail.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0165168419302610; http://dx.doi.org/10.1016/j.sigpro.2019.07.008; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85068849065&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0165168419302610; https://dx.doi.org/10.1016/j.sigpro.2019.07.008
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know