Modeling and experimental validation of twin lip balanced vane pump considering micromotions, contact mechanics, and lubricating interfaces
Simulation Modelling Practice and Theory, ISSN: 1569-190X, Vol: 133, Page: 102914
2024
- 3Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper presents a model formulation for balanced twin lip vane pumps and an experimental activity to validate the model. The simulation model begins with a geometrical module that preprocesses the CAD drawings of a given unit. The model then performs a fluid dynamic analysis using a lumped-parameter formulation to solve for the pressures inside properly defined control volumes within the unit. The fluid dynamic model is solved simultaneously with a motion module that evaluates the planar motions of the vanes using Newton’s law of motion and with a lubricating interface solver based on the Reynolds equation. Contact dynamics formulations and elastohydrodynamic relations are applied at the vane locations in contact with the cam ring. The comparison with experimental results highlights a good match in volumetric and hydromechanical efficiencies. The measured outlet pressure ripple matches the simulated one for all tested speeds and pressures. The paper also shows a breakdown of the distribution of volumetric and power losses arising from various components of the machine. The proposed methodology is computationally inexpensive, so it can be used in future design and optimization studies aimed at improving the performance of such units.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1569190X24000285; http://dx.doi.org/10.1016/j.simpat.2024.102914; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85186521561&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1569190X24000285; https://dx.doi.org/10.1016/j.simpat.2024.102914
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know