Formation of controllable pH gradients inside microchannels by using light-addressable electrodes
Sensors and Actuators B: Chemical, ISSN: 0925-4005, Vol: 346, Page: 130422
2021
- 4Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Understanding the influence of the pH value towards microenvironments of bioanalytical systems, especially inside lab-on-a-chip or micro total analysis systems, is crucial for the success of experiments. Different approaches are known to control the pH value inside those microchannels and to tailor pH gradients. Nevertheless, the existing concepts often lack the possibility for a flexible adaption of these gradients. To overcome this limitation, the present work reports on light-addressable electrodes (LAEs) as a tool to create pH gradients at the micro scale. Light-addressable electrodes are based on semiconductor materials in which electron-hole pairs are generated by illumination. These free charge carriers can trigger chemical reactions at the semiconductor-electrolyte interface, including the change of the pH value. For this purpose, we have designed LAEs based on glass/fluorine-doped tin oxide/titanium dioxide heterostructures. This work studies the influence of the applied external potential, illumination brightness and illumination area on the maximum pH change and width of the pH gradient using a pH-sensitive fluorescent dye. Furthermore, we evaluate the correlation between the pH change and electrical charge transfer. Finally, we provide an outlook towards tailoring complex pH gradients inside microchannels.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0925400521009904; http://dx.doi.org/10.1016/j.snb.2021.130422; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85113163651&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0925400521009904; https://dx.doi.org/10.1016/j.snb.2021.130422
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know