Comprehensive functional resilience assessment methodology for bridge networks using data-driven fragility models
Soil Dynamics and Earthquake Engineering, ISSN: 0267-7261, Vol: 159, Page: 107326
2022
- 21Citations
- 36Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper proposes a probabilistic seismic resilience assessment methodology for bridge networks subjected to spatially correlated earthquakes. The proposed method integrates the effects of influencing factors (e.g., regional seismic hazards, bridge fragilities, and traffic flow) and their uncertainties in the seismic performance assessment of bridge networks. However, there are two major challenges in applying such a methodology that need to be addressed: rapid seismic damage assessment of regional bridges and comprehensive resilience quantification of bridge networks. Therefore, a data-driven fragility scheme based on an artificial neural network is developed to predict the damage states of regional bridges under earthquakes, which can support the simulation of the functionalities of bridges and roadways by Monte Carlo simulation. Furthermore, a multi-dimensional functional resilience vector is explored to quantify the ability of bridge networks to maintain the holistic system function, important subsystem function, and emergency response function. Finally, the proposed methodology is illustrated on the Sioux Falls bridge network, which shows the quantitative effects of regional bridge fragilities, traffic flow, and epicenter location on the functional resilience of bridge networks.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0267726122001750; http://dx.doi.org/10.1016/j.soildyn.2022.107326; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85129293877&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0267726122001750; https://dx.doi.org/10.1016/j.soildyn.2022.107326
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know