Quantitative understanding of the impact of flooding durations on Cd variations in an acidic paddy soil during the flooding and drainage processes
Soil Security, ISSN: 2667-0062, Vol: 13, Page: 100114
2023
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures7
- Readers7
Article Description
The solubility and transformation of cadmium (Cd) are controlled by paddy soil pH, whereas paddy soil pH varies during flooding and drainage and is significantly controlled by flooding durations. However, there is still a lack of modeling approaches for simulating the impact of flooding durations on pH fluctuation and concomitant Cd effectiveness in Cd-polluted acidic paddy soils. Herein, laboratory findings combined with a process-based numerical modeling method were used to quantify the observed key geochemical processes of Fe/C/N/S and the accompanying Cd partitioning dynamics during flooding and drainage. During flooding stage, the number of protons consumed by Fe(III), NO 3 −, and SO 4 2− reduction increased with flooding durations, resulting in an increase of pH, which enhanced Cd immobilization and reduced Cd potential risk. After entering drainage stage, the number of protons released from Fe(II), NH 4 +, and S 2− oxidation increased with flooding time, leading to pH decrease, which increased Cd release. A process-based kinetic model fitting results showed that Fe(III) reduction and Fe(II) oxidation were key processes that increased and decreased pH, respectively, and that increasing flooding durations were not beneficial to Cd immobilization during flooding and drainage processes. The results of this study shed light on the impact of redox state of paddy soil on Cd dynamics under different flooding durations and provide a theoretical approach to quantify the contribution of key processes controlling changes in metal species, which can be used to simulate the dynamic behavior of heavy metals in paddy soil under different natural conditions by coupling other significant processes.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S266700622300031X; http://dx.doi.org/10.1016/j.soisec.2023.100114; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85176205101&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S266700622300031X; https://dx.doi.org/10.1016/j.soisec.2023.100114
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know