Conformational Change in an MFS Protein: MD Simulations of LacY
Structure, ISSN: 0969-2126, Vol: 15, Issue: 7, Page: 873-884
2007
- 66Citations
- 64Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations66
- Citation Indexes66
- 66
- CrossRef58
- Captures64
- Readers64
- 64
Article Description
Molecular dynamics simulations of lactose permease (LacY) in a phospholipid bilayer reveal the conformational dynamics of the protein. In inhibitor-bound simulations (i.e., those closest to the X-ray structure) the protein was stable, showing little conformational change over a 50 ns timescale. Movement of the bound inhibitor, TDG, to an alternative binding mode was observed, so that it interacted predominantly with the N-terminal domain and with residue E269 from the C-terminal domain. In multiple ligand-free simulations, a degree of domain closure occurred. This switched LacY to a state with a central cavity closed at both the intracellular and periplasmic ends. This may resemble a possible intermediate in the transport mechanism. Domain closure occurs by a combination of rigid-body movements of domains and of intradomain motions of helices, especially TM4, TM5, TM10, and TM11. A degree of intrahelix flexibility appears to be important in the conformational change.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0969212607002092; http://dx.doi.org/10.1016/j.str.2007.06.004; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=34447256364&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/17637346; https://linkinghub.elsevier.com/retrieve/pii/S0969212607002092; https://dx.doi.org/10.1016/j.str.2007.06.004
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know