PlumX Metrics
Embed PlumX Metrics

Molecular role of NAA38 in thermostability and catalytic activity of the human NatC N-terminal acetyltransferase

Structure, ISSN: 0969-2126, Vol: 31, Issue: 2, Page: 166-173.e4
2023
  • 6
    Citations
  • 0
    Usage
  • 8
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Most Recent News

Study Data from University of Pennsylvania Update Knowledge of Life Science (Molecular Role of Naa38 In Thermostability and Catalytic Activity of the Human Natc N-terminal Acetyltransferase)

2023 JUL 25 (NewsRx) -- By a News Reporter-Staff News Editor at Ivy League Daily News -- Research findings on Life Science are discussed in

Article Description

N-terminal acetylation occurs on over 80% of human proteins and is catalyzed by a family of N-terminal acetyltransferases (NATs). All NATs contain a small catalytic subunit, while some also contain a large auxiliary subunit that facilitates catalysis and ribosome targeting for co-translational acetylation. NatC is one of the major NATs containing an NAA30 catalytic subunit, but uniquely contains two auxiliary subunits, large NAA35 and small NAA38. Here, we report the cryo-EM structures of human NatC (hNatC) complexes with and without NAA38, together with biochemical studies, to reveal that NAA38 increases the thermostability and broadens the substrate-specificity profile of NatC by ordering an N-terminal segment of NAA35 and reorienting an NAA30 N-terminal peptide binding loop for optimal catalysis, respectively. We also note important differences in engagement with a stabilizing inositol hexaphosphate molecule between human and yeast NatC. These studies provide new insights for the function and evolution of the NatC complex.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know