J-A formulation: A finite element methodology for simulating superconducting devices
Superconductivity, ISSN: 2772-8307, Vol: 6, Page: 100049
2023
- 22Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
High-temperature superconductors are a powerful technological option to be applied in the current scenario of energy transition. Their applications include fault current limiters, power electrical cables, and electrical machines, for example. Due to the non-linearities of superconductors, it is computationally costly to run real models of superconducting equipment. Therefore, it is of paramount importance to have a reliable and fast formulation to model superconducting devices. This paper proposes a new hybrid J-A formulation to simulate superconducting devices. The new formulation is validated with 5 case studies, some of which are benchmarks. The J-A formulation agrees in all cases and has a smaller computation time when compared with the T-A formulation. Moreover, due to the simple implementation, the proposed formulation allows the possibility of running the J and A formulations in the same order and presents itself as a potential feature to speed up and help the design of the superconducting devices.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2772830723000145; http://dx.doi.org/10.1016/j.supcon.2023.100049; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85166651543&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2772830723000145; https://dx.doi.org/10.1016/j.supcon.2023.100049
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know