Till which pressures the fluid phase EOS models might stay reliable?
The Journal of Supercritical Fluids, ISSN: 0896-8446, Vol: 58, Issue: 2, Page: 204-215
2011
- 45Citations
- 23Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper examines the performance of three fluid phase equations of state in predicting the available very high-pressure data of n -pentane, n -hexane, cyclohexane, toluene, dichloromethane, chloroform and methanol. It is assumed that the key for success at such pressures is establishing the appropriate interrelation between the densities of saturated liquids and the imaginary infinity pressure states. The recently proposed EOS that combines SAFT with the cohesive term of cubic EOS (SAFT + Cubic) most likely satisfies this criterion. According to this model, the saturated liquid densities at T r = 0.4 are approximately 2.1 ± 0.1 times smaller than the densities predicted at the infinity pressure. With this ratio SAFT + Cubic yields reliable density estimations as far as the substances remain liquid (stable or metastable) in all the considered cases. Its pressure limit for accurate predictions of the auxiliary properties such as sound velocities and bulk moduli appear to be lower, typically around 1 GPa.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0896844611002166; http://dx.doi.org/10.1016/j.supflu.2011.05.014; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=80051472910&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0896844611002166; https://dx.doi.org/10.1016/j.supflu.2011.05.014
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know