PlumX Metrics
Embed PlumX Metrics

Electrodeposition of tin onto a silver textile electrode for Barbier-type electro-organic synthesis of homoallylic alcohols

Surfaces and Interfaces, ISSN: 2468-0230, Vol: 24, Page: 101085
2021
  • 1
    Citations
  • 0
    Usage
  • 6
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The development of electrodes (for sensors, energy technologies, and electrosynthesis) from abundant resources is necessary as a contribution to sustainability. Cellulose, the most abundant polymer, offers robust substrates for metalization towards the electrode development for electrosynthesis of organic chemicals. Electroless and electrodeposition methods are used to convert non-conductive cellulose-based textiles into electrically conductive textiles. The effect of current density on the electrodeposition of Sn onto a silver-coated textile is shown here to lead to Ag-Sn alloy and Sn deposits. The prepared Sn-Ag-VF textile electrode was investigated for electrifying the organic synthesis of homoallylic alcohol using benzaldehyde and allyl bromide as a model reaction. The homoallylic alcohol is synthesized in an undivided cell in the millimolar scale via constant current electrolysis method with 86 % conversion efficiency and up to a maximum of 72 % current efficiency.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know