CO adsorption mechanisms on transition metal surfaces and factors influencing the adsorption
Surfaces and Interfaces, ISSN: 2468-0230, Vol: 52, Page: 104962
2024
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
CO adsorption on transition metal (TM) surfaces has been extensively studied. Compared to the "vertical adsorption" (CO⊥M) in which the C–O bond is normal to the surface with the C bonded to the surface, few studies are devoted to the "parallel mode" (CO||M) where the C–O bond is (near) parallel to the surface with both C and O atoms interacting with the surface. Here we report density functional calculations of CO adsorption on the stable surfaces of 27 TMs. The results show that CO adsorbs only in CO⊥M mode on IB, IIB, VIIB and VIII TMs while both CO⊥M and CO||M modes exist on IIIB to VIB TMs, with CO||M being more stable. Overlap population analysis reveals that the interactions between metal d AOs and O 2p AOs dominate the CO||M mode where the CO π bond is greatly weakened, resulting in significantly activated CO. The adsorption mode and adsorption energy can be tuned by ensemble effect, lattice strain and crystal structure, while the ligand effect is weak and is not able to change the adsorption mode of CO. The present work demonstrates that ensemble effect, lattice strain and crystal structure can be utilized to modify surface chemistry and promote catalytic performance effectively.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know