Efficient parameterization of adsorbate–adsorbate interactions on metal surfaces
Surface Science, ISSN: 0039-6028, Vol: 754, Page: 122678
2025
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Quantitative modeling of surface reactions relies on accurate potential energy surfaces that include adsorbate–adsorbate interactions. Using density functional theory calculations we introduce an efficient procedure to parameterize adsorbate–adsorbate interactions and present results for interactions between O 2, O, OH and H 2 O on Pt, Ir, Rh and Pd surfaces. The targeted interactions are important when describing, for example, the electrochemical oxygen reduction reaction. However, an accurate representation of both non-directional interactions and directional hydrogen bonds remains challenging. By analyzing the dominant contributions, we find that accurate parameterizations can be constructed by separately considering surface mediated electronic interactions and pairwise hydrogen bonds. Two methods are evaluated to account for interactions beyond nearest-neighbors. Our work provides a general framework to analyze adsorbate–adsorbate interactions and present parameterizations suitable for efficient kinetic Monte Carlo simulations.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0039602824002292; http://dx.doi.org/10.1016/j.susc.2024.122678; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85212315162&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0039602824002292; https://dx.doi.org/10.1016/j.susc.2024.122678
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know