Protection of DFP-induced oxidative damage and neurodegeneration by antioxidants and NMDA receptor antagonist
Toxicology and Applied Pharmacology, ISSN: 0041-008X, Vol: 240, Issue: 2, Page: 124-131
2009
- 95Citations
- 104Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations95
- Citation Indexes95
- 95
- CrossRef92
- Captures104
- Readers104
- 104
Article Description
Prophylactic agents acutely administered in response to anticholinesterases intoxication can prevent toxic symptoms, including fasciculations, seizures, convulsions and death. However, anticholinesterases also have long-term unknown pathophysiological effects, making rational prophylaxis/treatment problematic. Increasing evidence suggests that in addition to excessive cholinergic stimulation, organophosphate compounds such as diisopropylphosphorofluoridate (DFP) induce activation of glutamatergic neurons, generation of reactive oxygen (ROS) and nitrogen species (RNS), leading to neurodegeneration. The present study investigated multiple affectors of DFP exposure critical to cerebral oxidative damage and whether antioxidants and NMDA receptor antagonist memantine provide neuroprotection by preventing DFP-induced biochemical and morphometric changes in rat brain. Rats treated acutely with DFP (1.25 mg/kg, s.c.) developed onset of toxicity signs within 7–15 min that progressed to maximal severity of seizures and fasciculations within 60 min. At this time point, DFP caused significant ( p < 0.01) increases in biomarkers of ROS (F 2 -isoprostanes, F 2 -IsoPs; and F 4 -neuroprostanes, F 4 -NeuroPs), RNS (citrulline), and declines in high-energy phosphates (HEP) in rat cerebrum. At the same time, quantitative morphometric analysis of pyramidal neurons of the hippocampal CA1 region revealed significant ( p < 0.01) reductions in dendritic lengths and spine density. When rats were pretreated with the antioxidants N - tert -butyl-α-phenylnitrone (PBN, 200 mg/kg, i.p.), or vitamin E (100 mg/kg, i.p./day for 3 days), or memantine (18 mg/kg, i.p.), significant attenuations in DFP-induced increases in F 2 -IsoPs, F 4 -NeuroPs, citrulline, and depletion of HEP were noted. Furthermore, attenuation in oxidative damage following antioxidants or memantine pretreatment was accompanied by rescue from dendritic degeneration of pyramidal neurons in the CA1 hippocampal area. These findings closely associated DFP-induced lipid peroxidation with dendritic degeneration of pyramidal neurons in the CA1 hippocampal area and point to possible interventions to limit oxidative injury and dendritic degeneration induced by anticholinesterase neurotoxicity.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0041008X09002804; http://dx.doi.org/10.1016/j.taap.2009.07.006; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=70349251175&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/19615394; https://linkinghub.elsevier.com/retrieve/pii/S0041008X09002804
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know