Microfluidic paper-based analytical device for the speciation of inorganic nitrogen species
Talanta, ISSN: 0039-9140, Vol: 271, Page: 125671
2024
- 2Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A microfluidic paper-based analytical device (μPAD) utilizing gas-diffusion separation and solid-phase reduction was developed for the first time for the determination of both ammonium and nitrate, which are the dominant inorganic nitrogen species in environmental waters. The device consists of 3 filter paper layers accommodating the sample, reagent and detection zones. The reagent zone is separated from the detection zone by a semipermeable hydrophobic membrane and acts as a solid-phase reactor where nitrate is reduced to ammonia by Devarda's alloy microparticles, integrated into a μPAD for the first time. The detection zone incorporates the acid-base indicators bromothymol blue (BTB) or nitrazine yellow (NY) and changes colour in two steps. Initially the colour change is caused by ammonia generated by the reaction of ammonium and sodium hydroxide in the sample zone. This colour change is followed by a subsequent colour change as a result of the ammonia produced by the reduction of nitrate by the Devarda's alloy microparticles. The corresponding reflectance value changes are used for the quantification of the two inorganic nitrogen species in the ranges 6.5–100.0 or 2.1–15.0 mg N L −1 for ammonium and 18.2–100.0 or 4.2–15.0 mg N L −1 for nitrate when BTB or NY are used, respectively. Under optimal conditions the limits of quantification of ammonium and nitrate in the case of BTB were determined as 6.5 and 18.2 mg N L −1, respectively, while the corresponding values in the case of NY were found to be 2.1 and 4.2 mg N L −1. The newly developed μPAD was stable for 62 days when stored in a freezer and 1 day at ambient temperature. It was validated with a certified reference material and successfully applied to the determination of ammonium and nitrate in spiked environmental water samples and soil extracts.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S003991402400050X; http://dx.doi.org/10.1016/j.talanta.2024.125671; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85183998876&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38306810; https://linkinghub.elsevier.com/retrieve/pii/S003991402400050X; https://dx.doi.org/10.1016/j.talanta.2024.125671
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know