Optimizing Ni–Cr patterned boron-doped diamond band electrodes: Doping effects on electrochemical efficiency and posaconazole sensing performance
Talanta, ISSN: 0039-9140, Vol: 278, Page: 126519
2024
- 1Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
Article Description
There is growing interest in developing diamond electrodes with defined geometries such as, for example, micrometer-sized electrode arrays to acquire signals for electroanalysis. For electroanalytical sensing applications, it is essential to achieve precise conductive patterns on the insulating surface. This work provides a novel approach to boron-doped diamond patterning using nichrome masking for selective seeding on an oxidized silicon substrate. The optimized process involves nichrome deposition, sonication, chemical etching, seeding, and tailored chemical vapor deposition of boron-doped diamond with an intrinsic layer to suppress boron diffusion. Through a systematic investigation, it was determined that isolated boron-doped diamond band electrodes can be efficiently produced on non-conductive silica. Additionally, the influence of boron doping on electrochemical performance was studied, with higher doping enhancing the electrochemical response of band electrodes. To demonstrate sensing capabilities, boron-doped diamond bands were used to detect posaconazole, an antifungal drug, exploiting its electroactive behaviour. A linear correlation between posaconazole concentration and oxidation peak current was observed over 1.43 × 10 −8 – 5.71 × 10 −6 M with a 1.4 × 10 −8 M detection limit. The developed boron-doped diamond microbands could significantly impact the field of electroanalysis, facilitating detection of diverse biologically relevant molecules. Overall, this diamond patterning approach overcomes major challenges towards all-diamond electrochemical sensor chips.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0039914024008981; http://dx.doi.org/10.1016/j.talanta.2024.126519; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85198243077&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39002261; https://linkinghub.elsevier.com/retrieve/pii/S0039914024008981
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know