On the error resilience of ordered binary decision diagrams
Theoretical Computer Science, ISSN: 0304-3975, Vol: 595, Page: 11-33
2015
- 6Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
An Ordered Binary Decision Diagram (OBDD) is a data structure that is used in an increasing number of fields of Computer Science (e.g., logic synthesis, program verification, data mining, bioinformatics, and data protection) for representing and manipulating discrete structures and Boolean functions. The purpose of this paper is to study the error resilience of OBDDs and to design a resilient version of this data structure, i.e., a self-repairing OBDD. In particular, we describe some strategies that make reduced ordered OBDDs resilient to errors in the indices, that are associated to the input variables, or in the pointers (i.e., OBDD edges) of the nodes. These strategies exploit the inherent redundancy of the data structure, as well as the redundancy introduced by its efficient implementations. The solutions we propose allow the exact restoring of the original OBDD and are suitable to be applied to classical software packages for the manipulation of OBDDs currently in use. Another result of the paper is the definition of a new canonical OBDD model, called Index-Resilient Reduced OBDD, which guarantees that a node with a faulty index has a reconstruction cost O(r), where r is the number of nodes with corrupted index. Experimental results on a classical benchmark suite validate the proposed approaches.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0304397515005149; http://dx.doi.org/10.1016/j.tcs.2015.05.050; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84937418728&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0304397515005149; https://dx.doi.org/10.1016/j.tcs.2015.05.050
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know