Ricci–Ollivier curvature of the rooted phylogenetic subtree–prune–regraft graph
Theoretical Computer Science, ISSN: 0304-3975, Vol: 699, Page: 1-20
2017
- 8Citations
- 20Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Statistical phylogenetic inference methods use tree rearrangement operations such as subtree–prune–regraft (SPR) to perform Markov chain Monte Carlo (MCMC) across tree topologies. The structure of the graph induced by tree rearrangement operations is an important determinant of the mixing properties of MCMC, motivating the study of the underlying SPR graph in greater detail. In this paper, we investigate the SPR graph of rooted trees (rSPR graph) in a new way: by calculating the Ricci–Ollivier curvature with respect to uniform and Metropolis–Hastings random walks. This value quantifies the degree to which a pair of random walkers from specified points move towards each other; negative curvature means that they move away from one another on average, while positive curvature means that they move towards each other. In order to calculate this curvature, we develop fast new algorithms for rSPR graph computation. We then develop formulas characterizing how the number of rSPR neighbors of a tree changes after an rSPR operation is applied to that tree. These give bounds on the curvature, as well as a flatness-in-the-limit theorem indicating that paths of small topology changes are easy to traverse. However, we find that large topology changes (i.e. moving a large subtree) give pairs of trees with negative curvature. We show using simulation that mean access time distributions depend on distance, degree, and curvature, demonstrating the relevance of these results to stochastic tree search.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0304397517301081; http://dx.doi.org/10.1016/j.tcs.2017.02.006; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85014102905&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0304397517301081; https://api.elsevier.com/content/article/PII:S0304397517301081?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S0304397517301081?httpAccept=text/plain; https://dul.usage.elsevier.com/doi/; https://dx.doi.org/10.1016/j.tcs.2017.02.006
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know