New approximation algorithms for the heterogeneous weighted delivery problem
Theoretical Computer Science, ISSN: 0304-3975, Vol: 932, Page: 102-115
2022
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
We study the heterogeneous weighted delivery (HWD) problem introduced in [Bärtschi et al., STACS'17] where k heterogeneous mobile agents (e.g., robots, vehicles, etc.), initially positioned on vertices of an n -vertex edge-weighted graph G, have to deliver m messages. Each message is initially placed on a source vertex of G and needs to be delivered to a target vertex of G. Each agent can move along the edges of G and carry at most one message at any time. Each agent has a rate of energy consumption per unit of traveled distance and the goal is that of delivering all messages using the minimum overall amount of energy. This problem has been shown to be NP-hard even when k=1, and is 4 ρ -approximable where ρ is the ratio between the maximum and minimum energy consumption of the agents. In this paper, we provide approximation algorithms with approximation ratios independent of the energy consumption rates. First, we design a polynomial-time 8-approximation algorithm for k=O(logn), closing a problem left open in [Bärtschi et al., ATMOS'17]. This algorithm can be turned into an O(k) -approximation algorithm that always runs in polynomial-time, regardless of the values of k. Then, we show that HWD problem is 36-approximable in polynomial-time when each agent has one of two possible consumption rates. Finally, we design a polynomial-time O˜(log3n) -approximation algorithm for the general case.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0304397522004844; http://dx.doi.org/10.1016/j.tcs.2022.08.009; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85137727120&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0304397522004844; https://dx.doi.org/10.1016/j.tcs.2022.08.009
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know