Quantification of grain boundary mobilities in natural olivine by annealing experiments and full-field modelling
Tectonophysics, ISSN: 0040-1951, Vol: 880, Page: 230333
2024
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
We investigate olivine grain boundary (GB) migration in natural peridotites experimentally annealed at high pressure and high temperature, and couple the experimental observations to full-field grain growth models to provide the distribution of GB mobilities in natural olivine polycrystals. A stack of four slices of natural mylonitic peridotite (Oman ophiolite) was annealed at 1473 K for 5 h under a confining pressure of 300 MPa of argon in a Paterson press. The three sintered interfaces of the stack are characterized using scanning electron microscopy and electron backscatter diffraction (EBSD) to extract a distribution of apparent (2D) GB displacements. Full-field simulations of numerically sintered interfaces are then used to infer the GB mean mobility and distribution in olivine polycrystal allowing forward modelling exercise to reproduce the experimental GB displacement distribution. This yields widely dispersed mobilities, which can be approximated by a log-normal distribution of 10−15.85±2.58m4.J−1.s−1. Both the average and the dispersion of GB mobilities can be explained by silicon grain boundary diffusion. Finally, we demonstrate that the high variability of GB mobilities in olivine implies a decrease of the mean growth rate with time. This elucidates the difficulties of extrapolating experimental grain growth rates to geological timescales and observed microstructures in peridotites.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0040195124001355; http://dx.doi.org/10.1016/j.tecto.2024.230333; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85192981837&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0040195124001355; https://dx.doi.org/10.1016/j.tecto.2024.230333
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know