Transient seismic velocity variation accompanying an M L 4.2 earthquake on SE margin of the Tibetan Plateau and its implication for fault slip processes
Tectonophysics, ISSN: 0040-1951, Vol: 895, Page: 230578
2025
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
On 8 July 2020, an M L 4.2 earthquake occurred in the Xiaojiang fault zone along the eastern margin of the Tibetan Plateau. Applied ambient noise monitoring technique to the continuous waveforms from a near-fault small-aperture array, we obtain daily high-resolution variations in seismic velocity before and after the earthquake. When compared with environmental observations, we exclude these factors such as groundwater level, precipitation, temperature, and atmospheric pressure that might significantly influence the seismic velocity changes. We propose that the observed ∼10-day transitional phase from relatively high velocity to low velocity following the M L 4.2 earthquake, signifies a transition within the fault zone from a relatively compressional state to an extensional one. This transition could be an indicator of transient dilatation deformation during the long-term strike-slip process of the Xiaojiang fault, which is not easily detected by space geodetic measurements. When the fault zone is in extensional state, there is stronger strain-velocity sensitivity, which is verified by local long-period tidal strain.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know