Applied data science in patient-centric healthcare: Adaptive analytic systems for empowering physicians and patients
Telematics and Informatics, ISSN: 0736-5853, Vol: 35, Issue: 4, Page: 643-653
2018
- 73Citations
- 184Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We define the emerging research field of applied data science as the knowledge discovery process in which analytic systems are designed and evaluated to improve the daily practices of domain experts. We investigate adaptive analytic systems as a novel research perspective of the three intertwining aspects within the knowledge discovery process in healthcare: domain and data understanding for physician- and patient-centric healthcare, data preprocessing and modelling using natural language processing and (big) data analytic techniques, and model evaluation and knowledge deployment through information infrastructures. We align these knowledge discovery aspects with the design science research steps of problem investigation, treatment design, and treatment validation, respectively. We note that the adaptive component in healthcare system prototypes may translate to data-driven personalisation aspects including personalised medicine. We explore how applied data science for patient-centric healthcare can thus empower physicians and patients to more effectively and efficiently improve healthcare. We propose meta-algorithmic modelling as a solution-oriented design science research framework in alignment with the knowledge discovery process to address the three key dilemmas in the emerging “post-algorithmic era” of data science: depth versus breadth, selection versus configuration, and accuracy versus transparency.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0736585318303666; http://dx.doi.org/10.1016/j.tele.2018.04.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85046668450&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0736585318303666; https://dx.doi.org/10.1016/j.tele.2018.04.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know