The impact of Novel Process Windows on the Claisen rearrangement
Tetrahedron, ISSN: 0040-4020, Vol: 69, Issue: 14, Page: 2885-2890
2013
- 34Citations
- 27Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The impact of Novel Process Windows on the Claisen rearrangement in microflow was investigated. Elevated temperatures (up to 300 °C) were crucial to achieve full conversion of allyl phenyl ether in the Claisen rearrangement. We observed that 1-butanol was the optimal reaction solvent for this transformation in flow. Solvent-free reaction conditions were feasible for the Claisen rearrangement and provided quantitative yields of the target product at 280 °C and 100 bar. Also elevated reaction pressures (up to 300 bar) were investigated in the Claisen rearrangement. We found that thermal expansion and pressure-related compression phenomena cannot be ignored at such harsh reaction conditions. These phenomena lead to large deviations of the desired residence time (as calculated from the nominal flow rate) and have a clear impact on the observed reaction trends. Finally, we also investigated the temperature effect on the Johnson–Claisen rearrangement of cinnamyl alcohol. Quantitative yields were obtained at 200 °C and at 100 bar.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0040402013002494; http://dx.doi.org/10.1016/j.tet.2013.02.038; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84874663460&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0040402013002494; https://dx.doi.org/10.1016/j.tet.2013.02.038
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know