Pin1-mediated regulation of articular cartilage stem/progenitor cell aging
Tissue and Cell, ISSN: 0040-8166, Vol: 76, Page: 101765
2022
- 2Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef1
- Captures3
- Readers3
Article Description
Cartilage stem/progenitor cells (CSPCs) was recently isolated and identified from the cartilage tissue. CSPCs is essential for repair and regeneration of cartilage in osteoarthritis (OA). Aging is a primary risk factor for cartilage damage and joint OA. Although studies have confirmed the link between cell aging and OA, the underlying molecular mechanisms regulating CSPCs aging are not fully understood. In this study, we investigated the role of Pin1 in the aging of rat knee joint CSPCs. We isolated CSPCs from rat knee joints and demonstrated that, in long-term in vitro culture, Pin1 protein levels are significantly reduced. At the same time, expression of the senescence-related β-galactosidase and the senescence marker p16 INK4A were markedly elevated. In addition, Pin1 overexpression reversed the progression of cellular senescence, as evidenced by the down-regulation of senescence-related β-galactosidase, increased EdU positive cells and diminished levels of p16 INK4A. In contrast, Pin1 siRNA incorporation promoted CSPCs senescence. In addition, we also observed the distribution of cell cycles through flow cytometry and revealed that Pin1 deficiency results in cell cycle arrest in the G1 phase, suggesting severe lack of proliferation ability, a sign of cellular senescence. Collectively, these results validated that Pin1 is an essential regulator of CSPCs aging.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0040816622000374; http://dx.doi.org/10.1016/j.tice.2022.101765; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85126144283&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35227974; https://linkinghub.elsevier.com/retrieve/pii/S0040816622000374; https://dx.doi.org/10.1016/j.tice.2022.101765
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know