Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges
Trends in Food Science & Technology, ISSN: 0924-2244, Vol: 110, Page: 687-699
2021
- 178Citations
- 305Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
The health benefits associated with consuming fish products are mainly attributed to their desirable nutrition profiles, including vitamins, minerals, essential amino acids, and polyunsaturated fatty acids. However, large quantities of fish proteins are presently underutilized or discarded as waste. Effective strategies to utilize fish proteins are therefore needed. Recently, researchers have focused on generating and characterizing bioactive fish protein hydrolysates and peptides and then studying their potential health benefits. The major methods of producing, separating, and purifying protein hydrolysates are initially given. Then, the biological activities and potential mechanisms of action of protein hydrolysates and peptides are discussed. Finally, current limitations and future possibilities of fish peptide identification, production, and bioactivity are identified and discussed. Fermentation, chemical synthesis, and enzymatic hydrolysis are effective methods of obtaining hydrolysates from underutilized fish protein by-products. These hydrolysates can then be purified by membrane separation and chromatographic methods to obtain bioactive peptides. The molecular characteristics of the peptides can then be identified using mass spectrometry. Fish hydrolysates/peptides have multiple biological activities, including antioxidative, lipid homeostasis modulation, anti-inflammatory, anticancer, neuroprotective, and antihypertensive activities, which make them promising nutraceutical ingredients for application in foods. Moreover, they often have emulsifying, foaming, and gelling properties, which means they may be suitable as multipurpose functional ingredients. Thus, waste-derived fish by-products may be turned into value-added functional ingredients designed to address chronic diseases. However, further research is required to develop large-scale commercially viable extraction and purification methods, develop robust structure-function relationships for peptides, and perform in vivo human studies of peptide bioactivity.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0924224421001382; http://dx.doi.org/10.1016/j.tifs.2021.02.031; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85101495754&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0924224421001382; https://dx.doi.org/10.1016/j.tifs.2021.02.031
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know