Low Phosphorus Causes Hepatic Energy Metabolism Disorder Through Dynamin-Related Protein 1–Mediated Mitochondrial Fission in Fish
The Journal of Nutrition, ISSN: 0022-3166, Vol: 155, Issue: 1, Page: 132-152
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Low phosphorus (LP) diets perturb hepatic energy metabolism homeostasis in fish. However, the specific mechanisms in LP-induced hepatic energy metabolism disorders remain to be fully elucidated. This study sought to elucidate the underlying mechanisms of mitochondria involved in LP-induced energy metabolism disorders. Spotted seabass were fed diets with 0.72% (S-AP, control) or 0.36% (S-LP) available phosphorus for 10 wk. Drp1 was knocked down or protein kinase (PK) A was activated using 8Br-cAMP (5 μM, a PKA activator) in spotted seabass hepatocytes under LP medium. Zebrafish were fed Z-LP diets (0.30% available phosphorus) containing Mdivi-1 (5 mg/kg, a Drp1 inhibitor) or 8Br-cAMP (0.5 mg/kg) for 6 wk. Biochemical and molecular parameters, along with transmission electron microscopy and immunofluorescence, were used to assess hepatic glycolipid metabolism, mitochondrial function, and morphology. Spotted seabass fed S-LP diets showed reduced ATP (52%) and cAMP (52%) concentrations, along with reduced Drp1 (s582) (38%) and PKA (61%) phosphorylation concentrations in the liver compared with those fed S-AP diets ( P < 0.05). Drp1 knockdown elevated ATP concentrations (1.99-fold), decreased mitochondrial DRP1 protein amounts (45%), and increased mitochondrial aspect ratio (1.82-fold) in LP-treated hepatocytes ( P < 0.05). Furthermore, 8Br-cAMP-treated hepatocytes exhibited higher PKA phosphorylation (2.85-fold), ATP concentrations (1.60-fold), and mitochondrial aspect ratio (2.00-fold), along with decreased mitochondrial DRP1 protein concentrations (29%) under LP medium ( P < 0.05). However, mutating s582 to alanine mimic Drp1 dephosphorylation decreased ATP concentrations (63%) and mitochondrial aspect ratio (53%) in 8Br-cAMP-treated hepatocytes ( P < 0.05). In addition, zebrafish fed Z-LP diets containing Mdivi-1 or 8Br-cAMP had higher ATP concentrations (3.44-fold or 1.98-fold) than those fed Z-LP diets ( P < 0.05). These findings provide a potential mechanistic elucidation for LP-induced energy metabolism disorders through the cAMP/PKA/Drp1-mediated mitochondrial fission signaling pathway.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022316624011210; http://dx.doi.org/10.1016/j.tjnut.2024.10.044; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85210045931&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39491675; https://linkinghub.elsevier.com/retrieve/pii/S0022316624011210
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know