Glycogen metabolism and glucose transport in experimental porphyria
Toxicology, ISSN: 0300-483X, Vol: 197, Issue: 2, Page: 164-174
2004
- 7Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Hexachlorobenzene (HCB) is a fungicide of well-known porphyrinogenic ability, which induces an experimental porphyria that resembles human porphyria cutanea tarda (PCT) in several animal species. It has been demonstrated that high glucose ingestion prevents porphyria development, and high-fat/high-protein diets enhance HCB porphyrinogenic ability. On the contrary, a diet rich in carbohydrates reduces HCB effects. The aim of this work was to study HCB effects on glycogen synthesis and degradation, as well as on glucose synthesis and transport, in order to elucidate whether would justify the beneficial use of carbohydrates in this porphyria. Rats were treated with HCB dissolved in corn oil (five daily doses 100 mg/kg body weight). Results showed that: (1) HCB caused an increase in glycogen content; (2) glycogen synthase activity increased three times, and phosphorylase activity decreased about 40% due to fungicide intoxication. The effect of HCB on these two activities accounted for the higher glycogen content observed in treated animals; (3) three gluconeogenic enzymes were reduced 30–50%; (4) glucose uptake in the liver decreased in all weeks studied. The alterations found in glucose synthesis, its uptake in liver and other tissues, and its release from glycogen might contribute to the biochemical porphyria picture and would account for the effect of glucose above mentioned.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0300483X04000216; http://dx.doi.org/10.1016/j.tox.2003.12.014; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=1442274744&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/15003326; https://linkinghub.elsevier.com/retrieve/pii/S0300483X04000216; https://dx.doi.org/10.1016/j.tox.2003.12.014
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know