CIAM: A data-driven approach for classifying long-term engagement of public transport riders at multiple temporal scales
Transportation Research Part A: Policy and Practice, ISSN: 0965-8564, Vol: 165, Page: 321-336
2022
- 2Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Many human activities, including daily travel, show a mix of stable, intermittent and changing patterns in demand by individuals over time. However, the lack of continuous, long-term, passenger-linked data for public transport (PT) journeys means that we do not know how passenger ridership evolves in real-world networks. This paper proposes the CIAM model for classifying long-term passenger engagement with PT. CIAM is a data-driven model combining year-on-year churn (C), monthly intensity (I), annual (A) and multi-year (M) engagement. Parameter search algorithms are used to ensure that the learned features are distinctive and robust. We evaluated CIAM using a 5-year dataset from a PT network with over 300 million journeys. CIAM identified distinct patterns of long-term ridership at multiple time scales. Although the total number of annual journeys was relatively stable over the five years, we found long-term differences between passenger subgroups. Churn of passengers was a major factor in ridership with only 55% of passengers retained from year to year. Patterns of annual engagement are often intermittent, so short-term snapshots of a few weeks are typically not good indicators for longer term engagement. Only 27% of high-frequency, full-fare riders still have the same level of engagement four years later, compared with 55% who continue high-frequency engagement after only one year.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0965856422002300; http://dx.doi.org/10.1016/j.tra.2022.09.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85139333814&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0965856422002300; https://dx.doi.org/10.1016/j.tra.2022.09.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know