Discovery and translation of functional nucleic acids for clinically diagnosing infectious diseases: Opportunities and challenges
TrAC Trends in Analytical Chemistry, ISSN: 0165-9936, Vol: 158, Page: 116886
2023
- 10Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Functional nucleic acids (FNAs) are short, single-stranded nucleic acids that can be derived from synthetic nucleic acid libraries using test-tube selection experiments. Due to their excellent chemical stability, high binding affinities and specificities, compatibility with a variety of signal-transduction mechanisms, and ease of synthesis and modification, FNAs have a great potential to overcome some of the limitations of current pathogen diagnostic methods by acting as molecular recognition elements (MREs) for point-of-care testing. This review summarizes the development of FNA-based biosensors for viral and bacterial detection in clinical samples. We first discuss examples of selecting FNAs for recognizing biomarkers of viral and bacterial pathogens. This is followed by discussion on integrating FNAs into fluorescent, colorimetric, and electrochemical biosensors and applying these sensors towards clinically diagnosing infectious diseases caused by many important bacterial and viral pathogens. Finally, the challenges of making FNA-based biosensors for infectious diseases are provided.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0165993622003697; http://dx.doi.org/10.1016/j.trac.2022.116886; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85145564508&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0165993622003697; https://dx.doi.org/10.1016/j.trac.2022.116886
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know