PlumX Metrics
Embed PlumX Metrics

Leukapheresis for CAR-T cell production and therapy

Transfusion and Apheresis Science, ISSN: 1473-0502, Vol: 62, Issue: 6, Page: 103828
2023
  • 5
    Citations
  • 0
    Usage
  • 37
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Most Recent News

Dissecting the Cellular Pathways Behind CAR T Cell Therapy

T cells are part of the immune system that protects the body from infection by reacting against foreign or self-antigens via T cell receptor (TCR)

Review Description

Chimeric antigen receptor (CAR) T-cell therapy is an effective, individualized immunotherapy, and novel treatment for hematologic malignancies. Six commercial CAR-T cell products are currently approved for lymphatic malignancies and multiple myeloma. In addition, an increasing number of clinical centres produce CAR-T cells on-site, which enable the administration of CAR-T cells on site. The CAR-T cell products are either fresh or cryopreserved. Manufacturing CAR-T cells is a complicated process that begins with leukapheresis to obtain T cells from the patient's peripheral blood. An optimal leukapheresis product is crucial step for a successful CAR-T cell therapy; therefore, it is imperative to understand the factors that may affect the quality or T cells. The leukapheresis for CAR-T cell production is well tolerated and safe for both paediatric and adult patients and CAR-Τ cell therapy presents high clinical response rate in many studies. CAR-T cell therapy is under continuous improvement, and it has transformed into an almost standard procedure in clinical haematology and stem cell transplantation facilities that provide both autologous and allogeneic stem cell transplantations. In patients suffering from advanced haematological malignancies, CAR-T cell therapy shows incredible antitumor efficacy. Even after a single infusion of autologous CD19-targeting CAR-T cells in patients with relapsed or refractory diffuse large B cell lymphoma (DLBCL) and acute lymphoblastic leukaemia (ALL), long lasting remission is observed, and a fraction of the patients are being cured. Future novel constructs are being developed with better T cell persistence and better expansion. New next-generation CAR-T cells are currently designed to avoid toxicities such as cytokine release syndrome and neurotoxicity.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know