Short-term electric vehicle battery swapping demand prediction: Deep learning methods
Transportation Research Part D: Transport and Environment, ISSN: 1361-9209, Vol: 119, Page: 103746
2023
- 15Citations
- 49Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Battery swap stations have become an important alternative to general charging posts. Predicting battery swapping demand at the station level would be helpful for real-time operation of stations. This paper first provided insights into battery swapping demand patterns by analyzing a real-world dataset which contained 2,529 battery swapping events collected from 36 battery swap stations in Beijing from 31st July to 20th August 2019. Further, we developed a series of deep learning methods to predict the EV battery swapping demand, particularly considering temporal demand patterns obtained from the dataset. The deep learning models were Long Short-Term Memory, Bidirectional Long Short-Term Memory, Gated Recurrent Units, and Bidirectional Gated Recurrent Units. The results showed that the four deep learning models outperformed typical machine learning methods (e.g., support vector regression). An ablation study indicated that incorporating temporal battery swapping demand patterns into the deep learning methods could greatly improve model performance.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1361920923001438; http://dx.doi.org/10.1016/j.trd.2023.103746; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85156130637&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1361920923001438; https://dx.doi.org/10.1016/j.trd.2023.103746
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know