Positive and negative exchange bias in IrMn/NiFe bilayers
Thin Solid Films, ISSN: 0040-6090, Vol: 519, Issue: 3, Page: 1020-1024
2010
- 21Citations
- 49Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We present the observation of double shifted hysteresis loops in IrMn/NiFe bilayer structures. The bilayer structures were fabricated using high vacuum DC magnetron sputtering system. The hysteresis loops of the as deposited samples show the double shifted loops at NiFe layer thicknesses 5 nm and 6 nm, whereas the IrMn layer thickness was kept constant at 15 nm. The results were interpreted as the contribution of both positive and negative exchange bias fields. We suppose that this phenomenon is occurring due to the ferromagnetic (FM) layer exchange coupled with the antiferromagnetic (AFM) layer in two different magnetization directions. The ferromagnetic coupling of the interface spins in some regions of the film generates the hysteresis loop shift toward negative fields and antiferromagnetic coupling toward positive fields in the other regions. The double shifted hysteresis loops disappeared after magnetic field annealing of the samples above Neel temperature of the AFM layer. The X-ray diffraction patterns of the sample show the IrMn (111) crystalline growth necessary for the development of exchange bias field in this system. The correlation between the Magnetic Force Microscopy (MFM) domain structures of the as deposited sample and the magnetization reversal process of the double shifted hysteresis loops were discussed. The results suggest that the larger multidomain formation in the AFM layer with different magnetization directions was responsible for the positive and negative exchange bias fields in IrMn/NiFe bilayer samples.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0040609010011508; http://dx.doi.org/10.1016/j.tsf.2010.08.035; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=78049276301&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0040609010011508; https://dx.doi.org/10.1016/j.tsf.2010.08.035
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know