In-situ annealing characterization of atomic-layer-deposited Al 2 O 3 in N 2 , H 2 and vacuum atmospheres
Thin Solid Films, ISSN: 0040-6090, Vol: 682, Page: 147-155
2019
- 6Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Atomic-layer-deposited Al 2 O 3 films can be used for passivation, protective, and functional purposes in electronic devices. However, as-deposited, amorphous alumina is susceptible to chemical attack and corrosion during manufacturing and field-use. On the contrary, crystalline Al 2 O 3 is resistant against aggressive chemical treatments and corrosion. Here, high-temperature treatments in N 2, H 2, and vacuum were used to crystallize alumina which exhibited different crystalline phases. The annealing process was monitored continuously in situ by measuring the film temperature and surface reflectance to understand the crystallization kinetics. Ex-situ x-ray diffraction, electron microscopy, and composition analysis were used to probe the structure of the crystallized films and explain the formation of different alumina phases. This study provides a set of boundary conditions, in terms of temperature and atmosphere, for crystallizing chemically stable atomic-layer-deposited alumina for applications requiring a film thickness in the range of tens of nanometers without defects such as cracks.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0040609019301531; http://dx.doi.org/10.1016/j.tsf.2019.03.010; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85065532680&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0040609019301531; https://dx.doi.org/10.1016/j.tsf.2019.03.010
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know