Novel cuttlebone-inspired hierarchical bionic structure enabled high energy absorption
Thin-Walled Structures, ISSN: 0263-8231, Vol: 186, Page: 110693
2023
- 27Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Bionic design is an effective strategy for obtaining lightweight, high-performance, and even multifunctional structures. Here, we found a novel hierarchical lamellar chamber microstructure in cuttlebone. To determine whether and how this cuttlebone-like hierarchical structure (CL-H) works on its mechanical properties, various lattices with CL-H cellular structure through digital light processing technique were designed and fabricated. Results showed that the CL-H lattice had excellent mechanical performances, achieving specific energy absorption up to a dozen times that of the non-hierarchical cuttlebone-like structure (CL) and triply periodic minimal surface structures. The CL-H lattices presented progressive failure behaviors depending on the numbers of sub-chambers. Furthermore, the mechanisms of energy absorption characteristic and failure behavior were systematically analyzed by combining microstructure examination and FEM simulation, and a schematic model was proposed. This study shed light on the design and engineering of advanced bio-inspired materials with excellent mechanical properties.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0263823123001714; http://dx.doi.org/10.1016/j.tws.2023.110693; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85150901691&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0263823123001714; https://dx.doi.org/10.1016/j.tws.2023.110693
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know