Mechanical and dynamic performance of 3D-printed continuous carbon fibre Onyx composites
Thin-Walled Structures, ISSN: 0263-8231, Vol: 201, Page: 111979
2024
- 5Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The increasing attention towards 3D-printed fibre-reinforced thermoplastic composite structures is due to their superior characteristics, ability to produce intricate architectures, repeatability, and short lead times. This experimental study aims to investigate the mechanical and dynamic behaviours of 3D-printed composite structures under tensile and impact tests. Different types of samples are designed, including Onyx layers, triangular infill patterns (30 % and 40 % infill density), and continuous carbon fibre layers (two, four, six, and eight layers). Scanning electron microscopy (SEM) and X-ray micro-computed tomography (μCT) analyses are conducted to visualise the morphological characterisation and observe the delamination and damage of the composite structures. The results of the study reveal that the inclusion of carbon fibre reinforcement layers increases the stiffness and tensile strength of the composite structures. Furthermore, the addition of fibre layers in the composite panels provides critical support in damage resistance against impact loading. In contrast, sandwich structures without reinforcement layers are fatally punctured by the impact force, resulting in significant damage on both the impacted and bottom surfaces. The composite sandwich panels with fewer fibre-reinforced layers and lower infill density become softer and absorb impact energy better.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0263823124004221; http://dx.doi.org/10.1016/j.tws.2024.111979; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85194771885&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0263823124004221; https://dx.doi.org/10.1016/j.tws.2024.111979
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know