Advanced lightweight composite shells: Manufacturing, mechanical characterizations and applications
Thin-Walled Structures, ISSN: 0263-8231, Vol: 204, Page: 112286
2024
- 14Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
The development of modern aeronautical and aerospace industries has greatly been accelerated by the upgradation of advanced lightweight architecture materials. As a recognized and promising kind, lightweight composite structures amalgamate the benefits of advanced fiber-reinforced composite materials and innovative design concepts for weight reduction and thus have attracted substantial attention from structural engineers and scholars over the past few decades. The primary objective of the present article is to provide an extensive review and analysis of the recent achievement of a pivotal component in modern aeronautical and aerospace architectures: lightweight composite shells. This review delves into various composite grid, grid-stiffened, and sandwich shells with diverse constructions, elucidating their structural design concepts and applicable conditions. The academic discourse focuses on the three relevant key component technologies for developing lightweight composite shells, including manufacturing techniques, mechanical characterization and optimum design methods. Additionally, this article presents a comprehensive review of their applications and potentials in aeronautical and aerospace systems. The existing research gap and contemplates on future directions are discussed. The encountered challenges and possible opportunities for lightweight composite shells are also illuminated.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0263823124007274; http://dx.doi.org/10.1016/j.tws.2024.112286; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85200368551&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0263823124007274; https://dx.doi.org/10.1016/j.tws.2024.112286
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know