Ultrasonic fatigue of unfilled and carbon nanotube (CNT) reinforced polyetheretherketone (PEEK)
Ultrasonics, ISSN: 0041-624X, Vol: 138, Page: 107236
2024
- 1Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Fatigue properties of polyetheretherketone (PEEK) and multiwall carbon nanotube (CNT) reinforced PEEK were investigated with the ultrasonic fatigue testing method. Lifetimes were measured in the high and very high cycle fatigue regime at resonance frequency 19 kHz and load ratio R = -1. Pulse-pause loading served to avoid specimen self-heating and led to effective cycling frequencies in the range from several hundred Hz to about two kHz. Stress amplitude for 50 % fracture probability at 10 9 cycles is 21.2 ± 4.3 MPa for unreinforced PEEK (22 % of its tensile strength) and 33.5 ± 3.5 MPa for CNT reinforced PEEK (33 % of its tensile strength). Servohydraulic fatigue tests at 22 Hz with CNT reinforced PEEK delivered fatigue lifetimes comparable to ultrasonic tests, i.e. no frequency effect and no influence of load versus displacement control was observed. Keeping specimen temperature far below the glass transition temperature, ultrasonic fatigue testing of a high temperature resistant plastic was successfully implemented.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0041624X23003128; http://dx.doi.org/10.1016/j.ultras.2023.107236; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85182908852&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38183759; https://linkinghub.elsevier.com/retrieve/pii/S0041624X23003128; https://dx.doi.org/10.1016/j.ultras.2023.107236
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know