Development of a Deep Learning–Based System for Optic Nerve Characterization in Transorbital Ultrasound Images on a Multicenter Data Set
Ultrasound in Medicine & Biology, ISSN: 0301-5629, Vol: 49, Issue: 9, Page: 2060-2071
2023
- 2Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Characterization of the optic nerve through measurement of optic nerve diameter (OND) and optic nerve sheath diameter (ONSD) using transorbital sonography (TOS) has proven to be a useful tool for the evaluation of intracranial pressure (ICP) and multiple neurological conditions. We describe a deep learning–based system for automatic characterization of the optic nerve from B-mode TOS images by automatic measurement of the OND and ONSD. In addition, we determine how the signal-to-noise ratio in two different areas of the image influences system performance. A UNet was trained as the segmentation model. The training was performed on a multidevice, multicenter data set of 464 TOS images from 110 subjects. Fivefold cross-validation was performed, and the training process was repeated eight times. The final prediction was made as an ensemble of the predictions of the eight single models. Automatic OND and ONSD measurements were compared with the manual measurements taken by an expert with a graphical user interface that mimics a clinical setting. A Dice score of 0.719 ± 0.139 was obtained on the whole data set merging the test folds. Pearson's correlation was 0.69 for both OND and ONSD parameters. The signal-to-noise ratio was found to influence segmentation performance, but no clear correlation with diameter measurement performance was determined. The developed system has a good correlation with manual measurements, proving that it is feasible to create a model capable of automatically analyzing TOS images from multiple devices. The promising results encourage further definition of a standard protocol for the automatization of the OND and ONSD measurement process using deep learning–based methods. The image data and the manual measurements used in this work will be available at 10.17632/kw8gvp8m8x.1.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0301562923001692; http://dx.doi.org/10.1016/j.ultrasmedbio.2023.05.011; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85162905326&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37357081; https://linkinghub.elsevier.com/retrieve/pii/S0301562923001692; https://dx.doi.org/10.1016/j.ultrasmedbio.2023.05.011
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know