PlumX Metrics
Embed PlumX Metrics

Reductive dechlorination of 2,4-dichlorophenol by using MWCNTs-Pd/Fe nanocomposites prepared in the presence of ultrasonic irradiation

Ultrasonics Sonochemistry, ISSN: 1350-4177, Vol: 105, Page: 106871
2024
  • 0
    Citations
  • 0
    Usage
  • 5
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The research on developing a purification technology for 2,4-dichlorophenol (2,4-DCP) polluted water with high efficiency and the low energy consumption is crucial for achieving several Sustainable Development Goals (SDGs). In order to achieve these goals, MWCNTs-Pd/Fe nanocomposites were prepared by Fe nanoparticles modified with multi-walled carbon nanotubes (MWCNTs) and palladium (Pd) in the presence of ultrasonic irradiation. The MWCNTs-Pd/Fe nanocomposites were characterized by using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-Ray Diffraction (XRD), and others. Characterization results confirmed that the MWCNTs-Pd/Fe was successfully prepared, with the particle size of 80 nm and the specific surface area of 89.5 m 2 /g confirmed. We studied the reductive dechlorination of 2,4-Dichlorophenol (2,4-DCP) by MWCNTs-Pd/Fe nanocomposites under different conditions, and the optimized experimental results were found when the Pd loading was 0.4 %, the pH was 3, and the temperature was 30 °C. The phenol yield increased from 76.5 % (without ultrasonic irradiation) to 92.3 % (with ultrasonic irradiation) in 300 min and the 2,4-DCP removal rate reached 98.7 % under the optimal conditions. Therefore, ultrasonic irradiation enhanced the performance of MWCNTs-Pd/Fe nanocomposites for 2,4-DCP removal. We also established the degradation mechanism of chlorophenol by analyzing the intermediates, and proposed the degradation kinetics model. The degradation of 2,4-DCP followed the pseudo-first-order kinetics with the rate constant of 0.05988 min −1. Also, this study demonstrated the potential of using ultrasonic irradiation to improve the properties and recovery of MWCNTs-Pd/Fe nanocomposites, contributing to achievement of the Sustainable Development Goals (SDGs), including SDG-3, SDG-6.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know