Novel Carbon@BaMoZrFe 12 O 19 photocatalytic peroxymonosulfate activation for ibuprofen removal
Vacuum, ISSN: 0042-207X, Vol: 231, Page: 113801
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study reports a successful synthesis of a novel Carbon@BaMoZrFe 12 O 19 Mhexaferrite photocatalyst (NPs) using the coprecipitation method. Afterthat, the NPs were used as an activator for peroxymonosulfate (PMS) to remove ibuprofen (IBU) from water. NPs were subjected for a thorough characterization process utilizing various analytical techniques including XRD, FTIR, UV, PL TEM, SEM/EDS, and X-ray photoelectron spectroscopy (XPS). Significantly, the utilization of NPs for PMS activation demonstrated a notable improvement in the elimination of IBU under visible light. The research conducted a thorough investigation into the effects of various parameters, such as activating systems, initial pH, inorganic salts, IBU contents, and water matrix on the efficiency of IBU degradation. The significance of reactive oxygen species, such as sulfate and hydroxyl radicals, as well as singlet oxygen, in the removal of IBU, was clarified by chemical quenching tests. In addition, NPs exhibited competent magnetic separation and reprocessing capacities. The magnetic NPs revealed excellent constancy and recyclability, by sustaining degrading productivity after five consecutive cycles. Therefore, the present study offers a significant contributions to the understanding of photocatalytic degradation for organic pollutants through the utilization of magnetic photocatalysts.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know