Assessment of the effect of autohydrolysis treatment in banana’s pseudostem pulp
Waste Management, ISSN: 0956-053X, Vol: 119, Page: 306-314
2021
- 22Citations
- 73Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Banana’s pseudostem pulp (BPP) is a potential by-product obtained in the mechanical fiber extraction of banana’s pseudostem. Its chemical characterization revealed to have an interesting composition, with a high polysaccharides content and low content in lignin, which makes it particularly relevant for the biorefinery’s biochemical platform. Autohydrolysis pretreatment, studied under isothermal (140 °C) and non-isothermal conditions (140–220 °C), yielded oligosaccharides, mainly gluco -oligosaccharides, as the main soluble products. The highest oligosaccharides production (24 g/100 g raw material) was obtained at a severity factor of 2.3. Autohydrolysis pretreatment effectively disrupted the structure of the material, inducing an improvement of the enzymatic digestibility from 73% for the raw material up to 90% for the most severe conditions. Two stage autohydrolysis, with increasing severity, was also studied, allowing to obtain a higher amount of oligosaccharides (32 g/100 g raw material) and higher digestibility of the remaining solid (up to 97%).
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0956053X20305456; http://dx.doi.org/10.1016/j.wasman.2020.09.034; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85093661294&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/33125939; https://linkinghub.elsevier.com/retrieve/pii/S0956053X20305456; https://dx.doi.org/10.1016/j.wasman.2020.09.034
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know