Optimization of subcritical water pre-treatment for biogas enhancement on co-digestion of pineapple waste and cow dung using the response surface methodology
Waste Management, ISSN: 0956-053X, Vol: 150, Page: 98-109
2022
- 19Citations
- 80Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations19
- Citation Indexes19
- 19
- CrossRef14
- Captures80
- Readers80
- 80
Article Description
The optimal pre-treatment method and conditions depend on the types of lignocellulose present due to the complexity and the variability of biomass chemical structures. This study optimized subcritical water pre-treatment to ensure maximum methane production from pineapple waste prior to anaerobic co-digestion with cow dung using the response surface methodology. A central composite design was achieved with three different factors and one response. A total of 20 pre-treatment runs were performed at different temperatures, reaction times and water to solid ratios suggesting optimum values for subcritical water pre-treatment at 128.52℃ for 5 min with 5.67 to 1 water to solid ratio. Under these conditions, methane yield increased from 59.09 to 85.05 mL CH 4 /g VS with an increase of 23% biogas yield and 44% methane yield from the untreated. All pre-treatments above 200℃ showed reductions in biogas yield. Compositional analysis showed slight reduction of lignin and increase in α-cellulose content after the pre-treatment. Analysis using Fourier transform infrared spectroscopy and thermogravimetric analysis verified the presence of cellulosic material in pre-treated pineapple waste. Most of the hemicellulose was solubilized in the liquid samples after SCW pre-treatment. The crystallinity index of pineapple waste was reduced from 57.58% (untreated) to 54.29% (pre-treated). Scanning electron microscopy confirmed the structural modification of pre-treated pineapple waste for better microbial attack. Subcritical water pre-treatment is feasible as a promising method to enhance the anaerobic co-digestion process. Further study should be conducted to assess the scale-up of the process from pre-treatment to anaerobic digestion at the pilot plant level.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0956053X22003452; http://dx.doi.org/10.1016/j.wasman.2022.06.042; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85134490656&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35810730; https://linkinghub.elsevier.com/retrieve/pii/S0956053X22003452; https://dx.doi.org/10.1016/j.wasman.2022.06.042
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know