Investigating the relationship between toxicity and organic sum-parameters in kraft mill effluents
Water Research, ISSN: 0043-1354, Vol: 66, Page: 180-189
2014
- 17Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Elaborate toxicity diagnostics, such as toxicity identification evaluation (TIE) and effects-directed analysis (EDA) have helped in identifying the causative agents of effluent wastewater toxicity. However, simpler means of relating ecotoxicological effects to effluent composition could be useful for effluent management practices when there is no scope for more complex procedures. The aim of this work was to investigate and isolate the relationship between biological responses and commonly measured organic sum-parameters, such as chemical- and biochemical oxygen demand (COD and BOD, respectively) in kraft mill effluents. In a top-down approach, the whole effluent toxicity (WET) of effluent samples was first determined from Pseudokirchneriella subcapitata and Ceriodaphnia dubia bioassays. The theoretical toxicity that could be attributed to the metal content was then estimated, via a combination of equilibrium chemical speciation- and metal toxicity modelling. By assuming concentration addition, the metal toxicity was subtracted from the WET, isolating the toxicity thought to be caused by the organics. Strong and significant correlations between the ‘corrected’ toxicity and organic sum-parameters were found for both species. The growth of P. subcapitata was negatively associated with increasing COD concentrations, whereas reproduction of C. dubia was negatively associated with increasing BOD concentrations. The linear relationships, along with robust estimations of their uncertainty bounds, can provide valuable, albeit rough, guidance for kraft mill effluent management practices.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0043135414005909; http://dx.doi.org/10.1016/j.watres.2014.08.023; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84907623481&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/25213683; https://linkinghub.elsevier.com/retrieve/pii/S0043135414005909; https://dx.doi.org/10.1016/j.watres.2014.08.023
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know