Filter-membrane treatment of flowing antibiotic-containing wastewater through peroxydisulfate-coupled photocatalysis to reduce resistance gene and microbial inhibition during biological treatment
Water Research, ISSN: 0043-1354, Vol: 207, Page: 117819
2021
- 55Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations55
- Citation Indexes55
- 55
- CrossRef11
- Captures23
- Readers23
- 23
Article Description
The direct biological treatment of antibiotics containing wastewater brings about a potential risk of antibiotic resistance genes (ARGs) spread. Although advanced oxidation technologies based on photocatalysis generally appear effective at degrading antibiotics in wastewater, the fate of ARGs in succeeding biological treatment system is still unknown. Herein, a filter-membrane-like carbon cloth-immobilized Fe 2 O 3 /g-C 3 N 4 photocatalyst is fabricated through immersion-calcination method. Peroxydisulfate-coupled photocatalysis system is developed to degrade tetracycline (TC, an emerging refractory antibiotic pollutant). The system can produce energetic active species (·OH, SO 4 ·−, h +, O 2 ·− and 1 O 2 ), exhibiting a superior performance towards TC degradation in static and continuous flow processes under visible-light irradiation. The pretreatment can eliminate the antibacterial activity of antibiotics wastewater, and the chemical oxygen demand removal is greatly enhanced in subsequent anaerobic or aerobic process. The microbial diversity and richness in activated sludge for pretreated water sample are significantly higher than those for the water sample without pretreatment. Meanwhile, the pretreatment can decrease the relative abundance of potential hosts of ARGs and reduce the emergence as well as dissemination risk of ARGs. This study uncovers the effect of pretreatment of antibiotics containing wastewater using advanced oxidation technologies on the treatment efficacy and antibiotic resistome fate in biological treatment system.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0043135421010137; http://dx.doi.org/10.1016/j.watres.2021.117819; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85118497818&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34741897; https://linkinghub.elsevier.com/retrieve/pii/S0043135421010137; https://dx.doi.org/10.1016/j.watres.2021.117819
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know