Ethical Incorporation of Artificial Intelligence into Neurosurgery: A Generative Pretrained Transformer Chatbot-Based, Human-Modified Approach
World Neurosurgery, ISSN: 1878-8750, Vol: 187, Page: e769-e791
2024
- 2Citations
- 35Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Artificial intelligence (AI) has become increasingly used in neurosurgery. Generative pretrained transformers (GPTs) have been of particular interest. However, ethical concerns regarding the incorporation of AI into the field remain underexplored. We delineate key ethical considerations using a novel GPT-based, human-modified approach, synthesize the most common considerations, and present an ethical framework for the involvement of AI in neurosurgery. GPT-4, ChatGPT, Bing Chat/Copilot, You, Perplexity.ai, and Google Bard were queried with the prompt “How can artificial intelligence be ethically incorporated into neurosurgery?”. Then, a layered GPT-based thematic analysis was performed. The authors synthesized the results into considerations for the ethical incorporation of AI into neurosurgery. Separate Pareto analyses with 20% threshold and 10% threshold were conducted to determine salient themes. The authors refined these salient themes. Twelve key ethical considerations focusing on stakeholders, clinical implementation, and governance were identified. Refinement of the Pareto analysis of the top 20% most salient themes in the aggregated GPT outputs yielded 10 key considerations. Additionally, from the top 10% most salient themes, 5 considerations were retrieved. An ethical framework for the use of AI in neurosurgery was developed. It is critical to address the ethical considerations associated with the use of AI in neurosurgery. The framework described in this manuscript may facilitate the integration of AI into neurosurgery, benefitting both patients and neurosurgeons alike. We urge neurosurgeons to use AI only for validated purposes and caution against automatic adoption of its outputs without neurosurgeon interpretation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1878875024007381; http://dx.doi.org/10.1016/j.wneu.2024.04.165; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85194307090&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38723944; https://linkinghub.elsevier.com/retrieve/pii/S1878875024007381; https://dx.doi.org/10.1016/j.wneu.2024.04.165
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know