Investigation of factors affecting rural drinking water consumption using intelligent hybrid models
Water Science and Engineering, ISSN: 1674-2370, Vol: 16, Issue: 2, Page: 175-183
2023
- 7Citations
- 38Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Identifying the factors affecting drinking water consumption is essential to the rational management of water resources and effective environment protection. In this study, the effects of the factors on rural drinking water demand were studied using the adaptive neuro-fuzzy inference system (ANFIS) and hybrid models, such as the ANFIS–genetic algorithm (GA), ANFIS–particle swarm optimization (PSO), and support vector machine (SVM)–simulated annealing (SA). The rural areas of Hamadan Province in Iran were selected for the case study. Five drinking water consumption factors were selected for the assessment according to the literature, data availability, and the characteristics of the study area (such as precipitation, relative humidity, temperature, the number of subscribers, and water price). The results showed that the standard errors of ANFIS, ANFIS–GA, ANFIS–PSO, and SVM–SA were 0.669, 0.619, 0.705, and 0.578, respectively. Therefore, the hybrid model SVM–SA outperformed other models. The sensitivity analysis showed that of the parameters affecting drinking water consumption, the number of subscribers significantly affected the water consumption rate, while the average temperature was the least significant factor. Water price was a factor that could be easily controlled, but it was always one of the least effective parameters due to the low water fee.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S167423702200093X; http://dx.doi.org/10.1016/j.wse.2022.12.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85146970072&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S167423702200093X; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=7477186&internal_id=7477186&from=elsevier; https://dx.doi.org/10.1016/j.wse.2022.12.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know