Observation and Mitigation of Leachables from Non-Product Contact Materials in Electromechanical Delivery Devices for Biotechnology Products
Journal of Pharmaceutical Sciences, ISSN: 0022-3549, Vol: 110, Issue: 12, Page: 3794-3802
2021
- 3Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Battery-powered drug delivery devices are widely used as primary containers for storing and delivering therapeutic protein products to improve patient compliance and quality of life. Compared to conventional delivery approaches such as pre-filled syringes, battery-powered devices are more complex in design requiring new materials/components for proper functionality, which could cause potential product safety and quality concerns from the extractable and leachables (E&L) of the new materials/components. In this study, E&L assessments were performed on a battery-powered delivery device during the development and qualification of the device, where novel compound 2‑hydroxy-2-methylpropiophenone (HMPP) and related compounds were observed in both E&L. The source of the HMPP and related compounds was identified to be the nonproduct contact device batteries, in which HMPP photo-initiator was used as a curing agent in the battery sealant to prevent leakage of the battery electrolytes. Toxicology assessment was performed, which showed the levels of HMPP observed in the device lots were acceptable relative to the permitted daily exposure. A drug product HMPP spike study was also performed, where no product impact was observed. Based on these assessments, an action threshold and specification limits could be established as a control strategy, if needed, to mitigate the potential risks associate with the observed leachables. As a full resolution, seven battery candidates from different suppliers were screened and one new battery was successfully qualified for the delivery devices. Overall, the holistic E&L approach was fully successful in the development and qualification of the battery-powered devices for biotherapeutic products delivery ensuring product quality and patient safety. Non-product contact materials are commonly rated as low or no risk and typically considered as out of scope of E&L activities for delivery systems following industry benchmark and regulatory agency guidance. This case study is novel as it brings into attention the materials that might not normally be in consideration during the development process. It is highly recommended to understand materials in the context of intended use on a case-by-case basis and not to generalize to ensure successful development and qualification.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022354921004081; http://dx.doi.org/10.1016/j.xphs.2021.08.007; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85113452988&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34390741; https://linkinghub.elsevier.com/retrieve/pii/S0022354921004081; https://dx.doi.org/10.1016/j.xphs.2021.08.007
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know