Vasodilator-Stimulated Phosphoprotein (VASP) depletion from breast cancer MDA-MB-231 cells inhibits tumor spheroid invasion through downregulation of Migfilin, β-catenin and urokinase-plasminogen activator (uPA)
Experimental Cell Research, ISSN: 0014-4827, Vol: 352, Issue: 2, Page: 281-292
2017
- 26Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations26
- Citation Indexes26
- 26
- CrossRef15
- Captures32
- Readers32
- 32
Article Description
A hallmark of cancer cells is their ability to invade surrounding tissues and form metastases. Cell-extracellular matrix (ECM)-adhesion proteins are crucial in metastasis, connecting tumor ECM with actin cytoskeleton thus enabling cells to respond to mechanical cues. Vasodilator-stimulated phosphoprotein (VASP) is an actin-polymerization regulator which interacts with cell-ECM adhesion protein Migfilin, and regulates cell migration. We compared VASP expression in MCF-7 and MDA-MB-231 breast cancer (BC) cells and found that more invasive MDA-MB-231 cells overexpress VASP. We then utilized a 3-dimensional (3D) approach to study metastasis in MDA-MB-231 cells using a system that considers mechanical forces exerted by the ECM. We prepared 3D collagen I gels of increasing concentration, imaged them by atomic force microscopy, and used them to either embed cells or tumor spheroids, in the presence or absence of VASP. We show, for the first time, that VASP silencing downregulated Migfilin, β-catenin and urokinase plasminogen activator both in 2D and 3D, suggesting a matrix-independent mechanism. Tumor spheroids lacking VASP demonstrated impaired invasion, indicating VASP’s involvement in metastasis, which was corroborated by Kaplan-Meier plotter showing high VASP expression to be associated with poor remission-free survival in lymph node-positive BC patients. Hence, VASP may be a novel BC metastasis biomarker.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0014482717300642; http://dx.doi.org/10.1016/j.yexcr.2017.02.019; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85013480782&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/28209486; https://linkinghub.elsevier.com/retrieve/pii/S0014482717300642; https://dx.doi.org/10.1016/j.yexcr.2017.02.019
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know