Spatial and temporal dynamics of RhoA activities of single breast tumor cells in a 3D environment revealed by a machine learning-assisted FRET technique
Experimental Cell Research, ISSN: 0014-4827, Vol: 410, Issue: 2, Page: 112939
2022
- 6Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- CrossRef2
- Captures28
- Readers28
- 28
Article Description
One of the hallmarks of cancer cells is their exceptional ability to migrate within the extracellular matrix (ECM) for gaining access to the circulatory system, a critical step of cancer metastasis. RhoA, a small GTPase, is known to be a key molecular switch that toggles between actomyosin contractility and lamellipodial protrusion during cell migration. Current understanding of RhoA activity in cell migration has been largely derived from studies of cells plated on a two-dimensional (2D) substrate using a FRET biosensor. There has been increasing evidence that cells behave differently in a more physiologically relevant three-dimensional (3D) environment. However, studies of RhoA activities in 3D have been hindered by low signal-to-noise ratio in fluorescence imaging. In this paper, we present a a machine learning-assisted FRET technique to follow the spatiotemporal dynamics of RhoA activities of single breast tumor cells (MDA-MB-231) migrating in a 3D as well as a 2D environment. We found that RhoA activity is more polarized along the long axis of the cell for single cells migrating on 2D fibronectin-coated glass versus those embedded in 3D collagen matrices. In particular, RhoA activities of cells in 2D exhibit a distinct front-to-back and back-to-front movement during migration in contrast to those in 3D. Finally, regardless of dimensionality, RhoA polarization is found to be moderately correlated with cell shape.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S001448272100495X; http://dx.doi.org/10.1016/j.yexcr.2021.112939; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85121247024&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34813733; https://linkinghub.elsevier.com/retrieve/pii/S001448272100495X; https://dx.doi.org/10.1016/j.yexcr.2021.112939
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know